必赢官网

导航切换



          马宗庆    讲师     硕导

 



          仪器科学与技术学科


基本信息

性别:女    ||  出生年月:1988.09    ||  政治面貌:党员

现任职称:讲师

最后学历:博士研究生     ||  最后学位:博士    ||  获学位单位:四川大学

联系方式:     ||  邮箱:zqma@bistu.edu.cn    ||  通讯地址:北京信息科技大学

导师信息

硕导/博导:硕导 || 批硕/博导时间:2022年01月

在读硕士: 1人 || 毕业硕士:0人 || 在读博士: || 毕业博士:

所属院系、学科及研究方向

所属学院:bwin必赢

所属系:  智能感知工程系

所属学科:仪器科学与技术

研究方向1:深度学习

研究方向2:医学影像分析

研究方向3:深计算机视觉

工作简历

2020.09 – 至今 bwin必赢测控系,讲师

承担教学任务 

本科课程:《深度学习》,《Python程序设计》

主要论文目录 

(1) Ma Z, Xie Q, Xie P, et al. HCTNet: A Hybrid ConvNet-Transformer Network for Retinal Optical Coherence Tomography Image Classification[J]. Biosensors, 2022, 12(7): 542.

(2) Xie Q, Ma Z, Zhu L, et al. Multi-task generative adversarial network for retinal optical coherence tomography image denoising[J]. Physics in Medicine and Biology, 2022.

(3) Ma Z, Zhou S, Wu X, et al. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning[J]. Physics in Medicine & Biology, 2019, 64(2): 025005.

(4) Ma Z, Wu X, Wang X, et al. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images[J]. Medical physics, 2019, 46(12): 5652-5665.

(5) Ma Z, Wu X, Song Q, et al. Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut[J]. Experimental and therapeutic medicine, 2018, 16(3): 2511-2521.

(6) Ma Z, Wu X, Sun S, et al. A discriminative learning based approach for automated nasopharyngeal carcinoma segmentation leveraging multi-modality similarity metric learning[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018: 813-816.

(7) Ma Z, Zhang Y, Zhang W, et al. Noise reduction in low-dose CT with stacked sparse denoising autoencoders[C]//2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector WorkshopNSS/MIC/RTSD). IEEE.

(8) Ma Z, Wu X, Zhou J. Automatic nasopharyngeal carcinoma segmentation in MR images with convolutional neural networks[C]//2017 International Conference on the Frontiers and Advances in Data Science (FADS). IEEE, 2017: 147-150.

科研成果

(1)基于多路卷积神经网络的MRI图像心脏结构分割方法,发明专利,ZL 2019 1 0780248.7